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Dynamical systems with SO(4) and SO(3,l) symmetry 

M M Enikova and V I Karloukovski 
JINR, Dubna, Moscow, USSR 

Received 23 February 1979 

Abstract. Dynamical systems with three degrees of freedom and a Hamiltonian quadratic in 
momenta and invariant under space rotations are considered. A class of such systems which 
can be interpreted as a non-linear realisation of dynamical SO(4) or SO(3,l)  symmetry 
groups with a ‘Runge-Lenze vector’ linear in momenta is found. The corresponding 
equations of motion are solved explicitly. 

1. Introduction 

Interest in classical mechanics has never ceased, and in the last few years it has even 
increased. Different reasons may be found to explain this line of development. We 
shall point out one; if not the most important, it is at least the reason for our interest in 
the particular mechanical problem we solve here. This is the increasing significance in 
physics of any kind of non-linear problem, and the solution of non-linear field theories 
in particular. Classical mechanics is the most developed and successful example of a 
non-linear classical theory. Its general principles and methods are clearly formulated. 
However, we are now in a position of knowing a lot more about interactions other than 
those on which the whole Newtonian world was based and of being faced with new 
phenomena which suggest the search and study of unconventional forms of interaction 
that would have remained outside the scope of mechanics in previous centuries. It 
would not sound eccentric at present to discuss velocity-dependent forces and position- 
dependent masses, for instance, as we have done in a recent work (Karloukovski 1978). 
There we found all the dynamical systems with strict Kepler symmetry, i.e. systems 
whose Hamiltonian is of the form 

with ‘hidden’ SO(4) or SO(3 , l )  symmetry and a Runge-Lenz vector quadratic in 
momenta. 

The present work is devoted to the SO(4) or SO(3 , l )  symmetric dynamical systems 
of the form (l.l), (1.2) with a ‘Runge-Lenz vector’ linear in momenta. After explaining 
some general relations and notation in 9 2, we discuss in § 3 all dynamical systems of this 
type, and solve in 0 4 the equations of motion. In § 5 we briefly discuss the behaviour of 
the trajectories and the motion under the symmetry transformations. 

The subclass of the SO(4) invariant dynamical systems, which we call the general 
case, is the mechanical analogue of non-linear realisations of the chiral SU(2) x SU(2) 
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symmetry in field theory (Weinberg 1968). This allows us to take the results obtained in 
this work back to field theory and to construct a large family of exact finite-energy 
solutions in classical chiral field theories (Velchev et a1 1978). 

2. General relations and notation 

We study here classical dynamical systems with three degrees of freedom, x = 
( x ' ,  x 2 ,  x 3 )  = ( x l ,  x 2 ,  x 3 ) ,  with the Lagrangian 

12.1) L = ;gil ( X ) X i i 1  - % (x) 

or the Hamiltonian 

12.2) H=' 11 z g  (X)P,PI  +%(XI .  

The contravariant and covariant metric tensors are related by 

(2.3) in g gnl = 8: = glng"'. 

We shall assume that the angular momentum 

(2.4) l k  
JJ = E l k X  Pi 

provides us with three constants of motion, i.e. 

J; =(J,,H)=O. (2.5) 
This condition is fulfilled provided 

g i ' ( x )  = G1(X2)S" + G~(x' )x 'x ' ,  %(x) = % ( x 2 ) ,  (2.6) 

H =i(G1(x2)p2+ G3(x2)(xp)')+ %(x2). (2.7) 
so that 

If the covariant components of the metric tensor are written as 

g i l ( x )  = di(x2)Sl,  + ~ Z ( X ~ ) X J ~ ,  (2.8) 

G1(xz)dl(x2)  = 1, ( G i ( x 2 ) + X 2 G 2 ( X 2 ) ) ( d i ( X 2 ) + X 2 d z ( X 2 ) )  = 1. (2.9) 

p ,  = aL/ai' = g l l i ' ,  x' = g"p1. (2.10) 

H = $(dl(x2)X2 + d2(x2)(xx)') + % ( x 2 ) ,  

J, = dl(x2)clklxkx1, (2.12) 

we have from (2.3) 

The momenta and velocities are related by 

The constants of the motion have the following form in terms of the velocities: 

(2.11) 

J 2  = d:(XZ)(X2i2 - (xX)'). 

We shall also use spherical coordinates 

(2.13) 

X I =  r sin 8 cos 9, 
in which (2.11)-(2.13) become 

x 2  = r sin 8 sin 9, x 3  = r cos 8, (2.14) 

H = ~ ( d l ( r 2 ) + r 2 d z ( r 2 ) ) i 2 + ~ r 2 d l ( r 2 ) ( ~ 2 + s i n 2  e# ' )+  % ( r ) ,  (2.15) 
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J~ = r2dl(r2)qi sin 8, 

J 2  = r4dd:(r2)(d2 +sin2 8 d2). 
Combining (2.15) and (2.17) we can write 

H = f(dl(r2) + r2d2( r2 ) ) i2+J2 /2r2d l ( r2 )  + %(r2) .  

2375 

(2.16) 

(2.17) 

(2.18) 

3. The SO(4) or SO(3,l) symmetric dynamical systems 

Let us describe the dynamical system we discuss in our work and formulate the problem 
we solve in this section. We want to find all dynamical systems with Hamiltonians of the 
form (2.7) possessing three first integrals Kj, j’ = 1,2,3, 

(3.1) 

(i) The Kj constitute a vector and close together with Jj the Poisson bracket Lie 

K j  = {Kj, H }  = 0, 

in addition to the three components of the angular momentum (2.4), such that: 

algebra of SO(4) or SO(3, l), 

(3.2) 

(3.3) 

(3.4) 

(ii) Kj is linear in momenta, 

Kj = a(x2)pj +(%2(x2)(xp)+%1(x2))xi. (3.5) 

Equation (3.1) imposes certain restrictions on the Hamiltonian H and Runge-Lenz 
vector K. They can be formulated as a system of ordinary differential equations for 
a(x2) ,  V1(x2), W2(x2), Gl(x2), G2(x2) and dU(x2)(f=df/dx2): 

(U +x2%2)G’1 - %2G1= 0, (3.6) 

( ~ u ’ + % ~ ) G ~ + ( ~ x ~ u ‘ - u ) G ~ = O ,  (3.10) 

Gl%i = 0. (3.11) 

There is a further restriction on H and K imposed by the requirement (3.34) which 
allows one to express V2(x2) through a(x2): 

(3.12) 

We shall now find the solutions of the system (3.6H3.12). Equation (3.11) tells us that 
either 

V1(X2) = 0 (3.13) 

G1(x2) = 0. (3.14) 

%2(x2) = (7 +2a(x2)a’(x2))/(a(x2) -2x2a’(x2)). 

or 

We shall call the former the general case and the latter the degenerate case. 
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Let us discuss first the degenerate case. The system (3.6)-(3.11) reduces to 

( a  +x2%2)G; -(%2+2x2%2)G2=0, 

(2x2%\ + %;I)G2 = 0 ,  

(3.15) 

(3.16) 

(a  + x 2 % 2 ) W =  0, (3.17) 

( 2 ~ ~ ~ 2 ’ -  u ) G ~  = 0. (3.18) 

Gz(xZ) = 0 would yield a Hamiltonian independent of the momenta. So we assume 
G2(x2)+0, and then the solutions of equations (3.16) and (3.18) are 

a ( x 2 j = a ( 1 ) J 7 ,  % 1 ( x 2 )  = %l(l)/J7. (3.19) 

Note also that equation (3.12) becomes 

0 x %2(x2) = 77 +2a(x2)a’(x2) .  

This is inconsistent unless 

a(1)  = JG, 

It follows from (3.17) that either 
in which case there is no restriction on %2(xz) imposed by (3.20). 

“ ~ ( x ’ )  = constant 

U ( X 2 ) + X 2 % 2 ( X 2 )  = 0. 

% 2 ( x 2 )  = - U ( X 2 ) / X 2  = -J-3/x , 

or 

In the latter case one obtains 
2 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

while %(x2)  and G2(x2) can be arbitrary functions. That is, the Hamiltonian and the 
Runge-Lenz vector are 

H = $ G ~ ( x ~ ) ( x ~ ) ~ +  %!(x’), (3.25) 

(3.26) 

~ ~ ( 2 )  = g(J<+ J75Ce2(x2)j2,  g = constant, (3.27) 

so that 
- 

H = tg(J-77+J;;Z%2(x2))2(Xp)2, (3.28) 

(3.29) K, = J - q x  1 pI  + [ % 2 ( x 2 ) ( x p )  + W I ( I ) / J ~ I X , .  

The expressions (3.26)-(3.29) are real only for 77 = -1. 

generated by the constants of motion J, and 
The degenerate case is actually a realisation of a simpler underlying E(3) symmetry 

(3.30) 

The Runge-Lenz vectors (3.26) and (3.29) are complex quantities built out of J and n : 

K = L V / 2 ( ~  x X)  + wl(ijn, (3.31) 

K=J<(Jxn)+(J2H/g+%l(l))n. (3.32) 

7 
Iti = x , / J x  . 
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In the general case equations (3.8) and (3.11) are satisfied automatically and 
equation (3.9) implies again that either 

%(x2) =constant 

U(X2)+X2%2(X2) = 0. 
or 

Assuming that (3.33) is the case, we find 

(3.33) 

(3.34) 

The functions (3.12), (3.13), (3.331, (3.35) and (3.36) satisfy all the equations (3.6)- 
(3.1 1). The function a (x’) and the integration constant g (interaction constant) remain 
arbitrary. The Hamiltonian, the Lagrangian and the Runge-Lenz vector are 

(XPY) (3.37) 
2 (qx2+a2)(q +4aa’-4x2a’2) H=- (qx2+a )p + 

2g 7 (a -2x2a’I2 

L = -  1 - g 2 q+4aa’-4xzu’2( xx) . 2) 9 

2(11x2+n2x -g  (qx2+a2l2 
(3.38) 

q + 2aa‘ 
a -2xzu1 Kj = upi + (XP )xi. (3.39) 

One readily verifies that, for q = 1, this is a mechanical analogue of the Weinberg 
realisations of the chiral SU(2) X SU(2) symmetry in field theory (Weinberg 1968). We 
note that one of the two Casimir elements is zero, 

JK = 0, (3.40) 

and the Hamiltonian turns out to be proportional to the other, 

H = (q/2g)(J2 + qK2).  (3.41) 

In the subcase a +x’%~ = 0 of the general case we obtain, inserting (3.12) in (3.34), 

qx2+a2(x2)=0 (3.42) 
or 

7 a(x2)=J-qx , 

which is real only for q = -1. Now %(x2) is arbitrary and 

%2(x2) = -&pa 

(3.43) 

(3.44) 

It follows from (3.6) that 

G1(x2) = 0, (3.45) 

i.e. this subcase is actually contained in the degenerate case. It is (3.25) and (3.26) with 
%1(1) = 0. 

4. The motion 

In the degenerate case there are the constants of motion ni fixing the direction of 
motion, i.e. the particle should move along a straight line. Choosing n = (1,0,0) so that 
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x = (x, 0, 0), p = ( p ,  0, 0),  K = (K, 0, 0), we write (3.25) and (3.26) in the form 

H = $ x 2 G 2 ( x 2 ) p 2 +  %(x2), 

K = %1(1), 

i.e. in the degenerate case the symmetry algebra, after reducing the problem to one 
dimension, disappears and the only constant of motion is the Hamiltonian. 

In the general case equation (2.18) implies 

-$(dl(r2) + r2d2(rZ))i2+ J/2r2dl(r2) = E = constant, 

and hence, taking into account (3.35) and (3.36), 

I ( a 2  + 7r2)(2gE - vJ2 - J2a2 / r  ) 
(a(r2) - 2r2a'(r2)) dr 

2 1 / 2 = t + c 1 .  

Solving this integral by the substitution 

a(r2) / r  =2(2gE/J2-q)z/(z2+ 1) 

one obtains 

provided sf f s:, and 

(4.3) 

(4.4) 

(4.7) 

2 2  for s 2 = s l .  Here 

s1  =-- s2=77--+ 2gE [ 1+ (2;F -- f1)2]1/2 (4.8) 2gE J2 77 + [ 1 + (y- 77)2]1'2. J2 

Equations (4.5) and (4.6) or (4.7) define r as an implicit function of time t .  It is 
remarkable that, due to the special form of s1 and S Z ,  related by 

s1s2 = 1, (4.9) 

equations (4.6) and (4.7) can be solved explicitly giving the results (2gE - vJ2 2 0) 
- - - 

- a ( r )  1 = JZgE - J'sin( p:(t - to))( 2gE cos2 J"(t - to) + J2 sin2 t f ( t  - 
r g 

(4.10) 
in the case of SO(4) symmetry (77 = 1) and 

- - - 2 E  -1 /2  -a(r)=~2gE+J2sh(~1-E(r--to))(2gE 1 ch2 J Z _ E ( t - f a ) + J 2 s h 2  J - C f - r d )  
r g g g 

(4.11) 

for the SO(3, l )  symmetry (17 = -1). We note also that the trajectories prove to be 
closed for 77 = 1. One could argue that this is a manifestation of the underlying 
symmetry. However, it has been demonstrated (Bacry et a1 1966, Fradkin 1967, 
Mukunda 1967a, b) that any dynamical system with s degrees of freedom possesses an 
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SO(s + 1) dynamical symmetry group, so we would rather say that this is a consequence 
of the simple mode of realisation of the underlying dynamical symmetry. 

It is convenient to replace the energy E by a frequency w, 

2E = qgw2, (4.12) 

in equations (4.10) and (4.11) and in what follows. Note that here the frequency is a 
dynamical variable and not merely an external parameter. The two expressions (4.10) 
and (4.1 1) can be combined in a single expression 

a(r) / r  = ~ q ( ~ 2 ~ 2 - J 2 ) s i n w ( t - ~ ~ ) [ g 2 ~ 2 ~ ~ ~ 2 ~ ( t - ~ ~ ) + J 2 s i n 2 w ( t - t ~ ) ] ~ 1 ’ 2 ,  (4.13) 

with w 2  = 2qE/g (2gE B J 2  for SO(4) and 2gE B -J2 for SO(3,l)). 
In order to find the trajectory, we solve the differential equations (2.16) and (2.17). 

Choosing the coordinate system so that J 3  = 0, we obtain from (2.16) 

q3 =o, C$ = C$o = constant, 

and (2.17) takes the form 

-=-Gl(r )= -  
d 6 J  2 J  
dt r2 g 

Combining (4.15) with (4.4) we have 

a (r’) - 2r2 da/dr2 
2 1’2 dr = 6 - $0, I r2(2gE - qJ2 - J’a’/r ) 

which yields 

a(r)/r = J q ( g 2 w 2 - J 2 )  sin(8-BO)/L 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Another way of obtaining the same result is to observe that on account of (3.39) and 

(4.18) 

(3.41) the equality 

Kjxj = lKlr cos($ - 8,) 
takes the form 

[(qr2+ a2) / (a  - 2r2a’) ] (xp)  = J2gH - qJ2 r cos($ - $0), (4.19) 

and eliminating the momenta from here and 

Gl(r2)p2+ Gz(rZ)(xp)’ = 2H, r2p2 - (xp)’ = J’, (4.20) 

we obtain (2.17). 

sin($ - $0) = J sin w ( t  - to)[g2w2 cos2 w ( t  - to) + J2 sin2 w ( t  - 
or 

sin 6 = [gw sin eo cos w ( t  - to ) -J  cos 80 sin w ( t  - to)] 

It follows from (4.13) and (4.17) that 

(4.21) 

x [g’w2 cos’ w ( t  - to) + J2 sin2 o(t - to)l-1’2. (4.22) 

Equations (4.13), (4.14) and (4.22) describe completely the motion of the particle on 
the (closed) trajectory (4.17). The motion and the trajectory depend on the choice of 
arbitrary function a (r). 
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The functions 
a ( r ) = J g - r  2 , 

a ( r )  = r 2 / 4 g ) ,  

a ( r )  = r cot(r/ Jg) 

(4.23) 

(4.24) 

(4.25) 

are used most frequently in the literature on SU(2) x SU(2) chiral field models. The 
choice (4.23), 

(4.26) z a ( r ) =  J g - v r  , 

is convenient for the following discussion. We have in this case 

r = [g cos2 w ( t  - to) + ( J 2 / g w 2 )  sin2 w ( t  - t o ) ~ " 2 ,  

r sin e = Jg [sin eo cos w ( t  - to)  - ( J / g o )  cos eo sin w ( t  - to )] ,  

4 = 40, 

(4.27) 

or in Cartesian coordinates 

x1 = v g [sin Bo cos C $ ~  cos w ( t  - to) - ( J / g w )  cos eo cos do sin w ( t  - to )] ,  

x2 = Jg [sin eo cos 4,, cos w ( t  - to) - ( J / g o )  cos eo sin do sin w ( t  - to )] ,  

x3 = Jg [cos eo cos w ( t  - to) + ( J / g o )  sin eo sin w ( t  - to)].  

Equation (4.28) may be written in the more compact form 

x = Jg  [ n  cos w ( t  - to) + (J /gw) l  sin w ( t  - to)],  

I- 

- 

where n and 1 are two unit orthogonal vectors, 
2 2 n = 1 = 1 ,  nl = 0 ,  

with components 

n l  = sin eo cos q50, 

n2 = sin eo sin q50, 

lI = sin(Bo-.rr/2) cos 40, 
l 2  = sin(Oo- ~ / 2 )  sin do, 

n3 = cos Bo, 13 = cos(eo - n/2).  

(4.28) 

(4.29) 

(4.30) 

(4.31) 

5. Transformation properties and geometric interpretation 

We have demonstrated in the preceding section that in the special case (4.26) the 
solution (4 .29)  is a superposition of two simple harmonic oscillations. Knowing the 
solution x for one choice of a(x2),  we can find the solution x' for any other choice of 
Z(x") by 

x'/ = Xj@(X2). (5.1) 

The function @(x2) satisfies the equation (Weinberg 1968)  

6(x2@2(x2)) = U(X*)@(X*).  (5.2) 

One should reproduce in this way the solution (4.13), (4.14), (4.22). 
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All these general case solutions as well as their particular forms (4.28) or (4.29) 
depend only on five integration constants: U,  J, to, Bo, and 4o (rather than on six). Our 
aim in the present section is to enlarge this family of solutions by increasing the number 
of independent integration constants to its maximum value of six. 

Before doing so, let us summarise the transformation properties of xi under the 
transformations of the symmetry group. The infinitesimal transformations in 
configuration space are given by 

(5.3) 

{JI, xj} = EljnXn, (5.4) 
{K,, Xi}' -a(x2)s , j - [ (q  + 2 a ( x 2 ) a ' ( X 2 ) ) / ( a ( x 2 ) - 2 x 2 a ' ( X 2 ) ) ] X I x ~  ( 5 . 5 )  

Any element X of the Lie algebra of the symmetry group generates a one-parameter 
subgroup of transformations which act on an arbitrary dynamical variable F according 
to 

a' 
l!  2! 

F + 8 = e u X  * F = F + a { X , F } + - { X , { X , F } } + .  . . . (5.6) 

The transformations generated by the J's are just the space rotations 

x' =eaT1 * x = R(a1, a 2 ,  a&. (5.7) 
Here R ( a l ,  cyz, a3) is the matrix of the space rotations, and the a's are the rotation 
angles about the three axes. Applying this linear transformation to the solutions (4.29) 
we obtain 

i= ~ x = J g [ t i  c o s w ( t - t t o ) + ( ~ / g w ) i s i n w ( t - t ~ ) ] ,  (5.8) 

n" = Rn, i= RI, (5.9) 
and this is the desired six-parameter family of solutions. Indeed, due to the fact that the 
rotations preserve the orthonormality relations, (4.30) goes into 

ai= 0, (5.10) 

and the two vectors 6, r' constrained by (5.10) bring into equation (5.8) 6-3 = 3 
independent parameters in addition to J, w, to, so that the total number of independent 
parameters is six. One can write (5.8) or (4.29) in the form 

(5.11) 

; 2 = 1 = 1 ,  '2 

x = J / ~ ( A  cos or + B sin Ut) ,  

with 

A = n cos oro - ( J / g w ) l  sin UtO, B = n sin uto + ( J / g w ) l  cos wro (5.12) 

obeying the only restriction 

A ~ + B ~ - ( A X B ) ~ = I .  

The equations of motion in Newtonian form, 
g j  + r i n k  = 0, 

with the Christoffel symbol 

(5.13) 

(5.14) 

ri,, = tgjS(ags, , /axm +agmS/axn -agmn/axs)  (5.15) 
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given by 

. q + 2 a a ’  2a‘ . 4a” 
l-1 = - 2 (x,& + x,S’,) - 2 lXJSmn - 2 lxJxmxn, mn 

q x 2 + a  a - 2 x  a a - 2 x  a 
(5.16) 

have the geometrical meaning of the geodesics in a curved space of constant curvature. 
For the parameterisation (4.26), the Christoffel symbol is 

rL= ( l / g ) [ q x ’ S m n  + x ’ x m x n / ( g - q x 2 ) I ,  (5.17) 

and the equations of motion (5.14) take the form 

g ( g  - 7 x 2 ) X , + [ q ( g  - q x 2 ) i 2 +  ( x i ) 2 ] x j  = 0.  (5.18) 

We already know that they have the solutions (5.11) with A and B arbitrary vectors 
restricted by (5.13). We can verify directly that this is really a solution of (5.18). To do 
this we note that (5.11) always implies 

(5.19) x = - w  2 x 

and vice versa, so that on the set of functions (5.11) equation (5.18) is equivalent to 

? ? g ( i 2 + w 2 x 2 ) - [ x 2 x 2 - ( x x ) 2 ] = w 2 g 2 .  

? ? ( A ~ + B ~ ) - ( A x B ) ~ =  1, 

Inserting here (5.11) we obtain 

(5.20) 

(5.21) 

coinciding with (5.13) in the case 7 = 1. In the case q = -1, B as well as w should be 
imaginary. 

We end the section by studying the action of the transformations generated by K on 
the solution (5.11), (5.13) for q = 1. It follows from the relations 

( 5 . 2 2 )  2 1  {BK, Bx)  = -P Jg - x 
7 { B K ,  J g - x  )=Px ,  

implied by (5.5) that (cf the definition (5.6)) 

(5.23) 

Here /3 = (PI, p 2 ,  P s )  are the parameters of the transformation and /3 = 1/31. Inserting in 
the right-hand side of (5.23) the solution (5.11), (5.13) we obtain 

(5.24) 2 = J& cos wt + B sin ut), 

where 

The functions Qi define the non-linear action of the transformations generated by K in 
the three-dimensional real space R3 of the vectors A, B or in the six-dimensional space 
R6 of the vectors (A, B). They satisfy the functional equations 

Q [ Q ( A ;  P I ;  r l=  Q [ A ;  4% 711, (5.26) 
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(5.27) 

It is not difficult to determine the composition function 

a = 4 / 3 9  Y )  (5.28) 

directly from (5.26). The result is 

(5.29) ( P Y )  

PY 
*cosa=cos~cosy--s inPsiny,  

(5.30) (PY) 
a P y'(  Y PY 

Pi 9 s i n  a = - sin P +1 sin y cos p +-sin @(cos y - I)). 

The transformation 

(A, B) :(A, B) (5.31) 

defined by (5.25) keeps intact the constraint (5.13) on the integration constants: 

A2+62-(AxB)2= 1, (5.32) 

which is another way of saying that the solution (5.1 1) goes into a solution (5.24) under 
the transformation (5.23) generated by K. 

Let us make a recapitulation. There are six independent constants of motion in our 
problem. One of them is the frequency w (the energy E, cf (4.12)). The manifold of the 
other five is a fourth-degree surface 

s: (AB)' -A'& + 1 7 ~ ~  + 1 7 ~ ~  - 1 = o (5.33) 

in R6. The frequency w remains unchanged under the transformations of the symmetry 
group SO(4) or SO(3, l), while the surface (5.33) is mapped onto itself. 

We can gain a further insight into the picture of the motion by recovering the fourth 
dimension of the vectors x ,  A and B. Namely, define the four-dimensional vectors 
4 = ( 4 0 ,  41,429 431, a = b o ,  al ,  a2, a31 and V = (WO, VI, V2, %) by 

4j = xi/&, a .  I = A .  19 %'. J = B .  1 3  j = 1 , 2 , 3 ,  
(5.34) v2 = %';+ 17v2 = 7. a2=a;+Ta  2 = I ,  

Then the surface S can be represented as a manifold imbedded in R8 defined by 

%'2 = 17% a%'= 0. 2 a = 1, 

The motion law (5.11), 

4i = a, cos wt  + qj sin ut, 

can now be completed by 

qo = a0 cos wt  + V0 sin wt 

(5.35) 

(5.36) 

(5.37) 

to a motion on the unit sphere (or hyperboloid for q = -1) in 

(5.38) 42=4;+?74 2 = l .  
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The last equality follows from (5.35). This allows us to conceive the motion (5.10) as a 
three-dimensional projection of the four-dimensional motion (5.36), (5.37) on the 
sphere (5.38). 
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